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Abstract
We examine the effect of frustrated interchain hoppings t⊥1 and t⊥2

on one-dimensional Mott insulators. By applying an N⊥-chain two-
loop renormalization-group method to the half-filled quasi-one-dimensional
Hubbard model, we show that the system remains insulating even for the large
t⊥1 as far as t⊥2 = 0 and vice versa, whereas a metallic state emerges by
increasing both interchain hoppings. We also discuss the metallic behaviour
suggested in the quasi-one-dimensional organic compound (TTM-TTP)I3 under
high pressure.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, the quasi-one-dimensional (Q1D) organic compound (TTM-TTP)I3, which is
characterized by a half-filled HOMO band due to presence of the monovalent anion I3, has
attracted much attention following the discovery of an anomalous metallic behaviour at high
pressure [1–3]. At ambient pressure, the system exhibits an insulating behaviour below
TMI = 120 K and can be regarded as a Mott insulator [1, 2]. Quite recently, Yasuzuka et al
[3] performed resistivity measurements at sufficiently high pressure up to 8 GPa and reported
that the metal–insulator transition temperature can be suppressed down to TMI = 20 K at
P = 8 GPa. A metallic ground state was predicted to occur for pressure above 10 GPa.

From a theoretical point of view, the 1D half-filled Hubbard model with the onsite
Coulomb repulsion U can be considered as a minimal model to describe a Mott insulator.
A large number of analytical and numerical results have been accumulated so far, and in one
dimension the exact ground state of the model is known to be Mott insulating for all positive
values of interaction U > 0. Thus one can expect that a higher-dimensionality effect due
to the intercolumn (i.e. interchain) electron transfer plays a key role in the appearance of the
predicted metallic behaviour in (TTM-TTP)I3. From the crystal structures, one can find that
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Figure 1. Left: lattice geometry of the present model. Right: the corresponding Fermi surface
where the case for N⊥ = 12 and t⊥1 = t⊥2 is shown.

the interchain network in (TTM-TTP)I3 is not so simple since the lattice structure is not simply
rectangular. The figures extracted from the extended Hückel calculations [4, 5] indicate that
there are two kinds of interchain transfer integral. Both are of the same order of magnitude;
that is, the interchain network is frustrated. So we adopt half-filled 1D Hubbard chains coupled
by the frustrated interchain hoppings t⊥1 and t⊥2. The lattice geometry is shown in figure 1. We
apply a recently developed two-loop renormalization-group (RG) method to this Q1D Hubbard
model and show that the system becomes metallic only when the interchain network introduces
frustration. We also discuss the metallic state suggested by the resistivity measurements on the
(TTM-TTP)I3 compound [3].

2. Model and renormalization group equations

We consider the quasi-one-dimensional half-filled Hubbard model in which electrons move on
a triangular lattice (figure 1). The transfer integrals are highly anisotropic: t‖ � |t⊥1|, |t⊥2|
(t‖(>0) is the transfer integral along chains and t⊥1 and t⊥2 are those between chains). Our
Hamiltonian is given by H = H0 + HI where

H0 = −t‖
∑

j,l,s

(
c†

j,l,sc j+1,l,s + H.c.
)

− t⊥1

∑

j,l,s

(
c†

j,l,sc j,l+1,s + H.c.
)

− t⊥2

∑

j,l,s

(
c†

j,l,sc j+1,l+1,s + H.c.
)

− μ
∑

j,l,s

c†
j,l,sc j,l,s , (1)

HI = U
∑

j,l

n j,l,↑n j,l,↓. (2)

The operator c j,l,s denotes electron annihilation on the j th site in the lth chain with spin s, and
n j,l,s = c†

j,l,sc j,l,s − 1
2 . The system size along chains (L) is considered to be sufficiently

large and the site index j , which runs j = 1, . . . , L, is to be understood as an integral
in the thermodynamic limit. The chain index runs l = 1, . . . , N⊥, and we consider the
system with finite number of chains N⊥, where the periodic boundary condition is imposed:
c j,N⊥+1,s = c j,1,s .

By applying the Fourier transformation, the kinetic term can be rewritten as H0 =∑
k,s ε(k)c†

s (k)cs(k), where k ≡ (k‖, k⊥) and the energy dispersion is given by

ε(k) = −2t‖ cos k‖ − 2t⊥1 cos k⊥ − 2t⊥2 cos(k‖ + k⊥) − μ. (3)

The transverse momentum is given by k⊥ = (2π/N⊥)n where n = −(N⊥/2)+1, . . . , (N⊥/2).
For small interchain hopping |t⊥i | � t‖, the system has an open Fermi surface (figure 1) where
the Fermi surface can be identified by the transverse momentum k⊥ [6]. By focusing on the
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lowest-order terms of the interchain hopping t⊥1 and t⊥2, the Fermi surfaces for right- and
left-moving electrons are given by (p = +/− = R/L)

k p
F (k⊥) = +p

π

2
+ p

t⊥1

t‖
cos k⊥ − t⊥2

t‖
sin k⊥, (4)

and the chemical potential is μ = O(t2
⊥i ). The Fermi surface is symmetric with respect to

k ↔ −k. By considering the weak-interacting case, we linearize the dispersion near the Fermi
energy. By further neglecting the k⊥ dependence of the velocity, the linearized dispersion is
given in a simple form: εp(k) = pv[k‖ − k p

F (k⊥)] with v = 2t‖.
Based on this dispersion relation, we apply the perturbative RG method and clarify the

appearance of the metallic state due to frustration from interchain hopping. In the weak-
coupling RG approach, a 1D Mott insulating behaviour follows from the relevance of electronic
Umklapp scattering, which has a bare finite amplitude at half-filling [7]. The dimensionality
effects on a 1D Mott insulator have also been examined numerically by the dynamical
mean-field approach extended to include one-dimensional fluctuations (the so-called chain-
DMFT) [8, 9] and by a field-theoretical method coupled to an RPA approach to interchain
hopping [10]. Fermi surface nestings, however, which are non-perturbative effects in t⊥ and
are crucial to the description of weak coupling 1D Mott insulators, are not taken into account
in these approaches. In the present N⊥-chain RG approach, these Fermi surface effects are
included [11, 12]. In order to clarify the metallic behaviour theoretically, one has to examine the
properties of the one-particle Green’s function, i.e., the self-energy corrections, whose singular
contributions only appear beyond the one-loop level of the RG. In the present paper, we apply
the recently developed two-loop RG theory [6] to the present half-filled Q1D Hubbard chains.

Here we briefly recall the formulation of the two-loop RG method for the Q1D systems.
The detailed formulation is given in [6] and we adopt the same notations. We first introduce
the coupling constants g1⊥, g2⊥, g‖, g3⊥, and g3‖, which represent the backward scattering
with opposite spins (g1⊥), the forward scattering with opposite spins (g2⊥), the forward
scattering with the same spins (g‖), the Umklapp scattering with opposite spins (g3⊥), and
the Umklapp scattering with the same spins (g3‖). Furthermore, the coupling constants are
differently renormalized depending on the external momenta of the vertex and have the explicit
transverse-momentum (i.e., patch-index) dependence. To take these effects into account, we
introduce the transverse-momentum dependence of the coupling constants in the initial g-ology
Hamiltonian. In terms of the Hubbard interaction U , the magnitude of the couplings are given
by g1⊥(q⊥,k⊥1,k⊥2) = g2⊥(q⊥,k⊥1,k⊥2) = g3⊥(q⊥,k⊥1 ,k⊥2) = U and g‖(q⊥,k⊥1,k⊥2) = g3‖(q⊥,k⊥1 ,k⊥2) = 0.
To simplify the notation in the following, we will suppress the ⊥ index of transverse momenta.
As in the 1D case, the physical picture becomes transparent by introducing a new set of
couplings: gρ(q,k1,k2) ≡ (g2⊥(q,k1,k2) + g‖(q,k1,k2)), gσ (q,k1,k2) ≡ (g2⊥(q,k1,k2) − g‖(q,k1,k2)) =
g1⊥(q,k1,k2), gc(q,k1,k2) ≡ g3⊥(q,k1,π−k2), and gcs(q,k1,k2) ≡ g3‖(q,k1,π−k2), where gρ and gc (gσ

and gs) are the coupling constants representing the charge (spin) degrees of freedom. The RG
equations, which are not shown explicitly, are derived by scaling the bandwidth cutoff � as
�l = �e−l , where l is the scaling parameter. The most important quantity in the present
analysis is the renormalization factor zk⊥ , which is determined by the two-loop self-energy
corrections. The explicit form of the RG equation for the wavefunction renormalization is
d

dl
ln zk = − 1

2N2
⊥

∑

q,k′
G2

�n(q,k,k′ ) J1(q,k,k′ ) − 1

2N2
⊥

∑

q,k′
G2

�u(q,k,k′ ) J ′
1(q,k,k′ ), (5)

where G2
�n and G2

�u denote the coupling constants

G2
�n(q,k,k′ ) ≡ 1

2

[
G2

ρ(q,k,k′ ) + 3 G2
σ (q,k,k′ )

]
, (6)

G2
�u(q,k,k′ ) ≡ G2

c(q,k,k′ ) + G2
c(π−q+k+k′ ,k,k′ ) − Gc(q,k,k′ )Gc(π−q+k+k′ ,k,k′ ) (7)
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Figure 2. Left: charge gap �ρ as a function of t⊥ for U/t‖ = 2, N⊥ = 12. The t⊥2 dependence of
�ρ with fixed t⊥1/t‖ = 0.4 is shown in the inset. Right: the wavefunction renormalization factor
zk⊥ (l = 7) for U/t‖ = 2, N⊥ = 12, t⊥1/t‖ = 0.4 with several t⊥2/t‖ .

with Gν = gν/(2πv). The quantities J1(q,k,k′) and J ′
1(q,k,k′ ) are nonuniversal cutoff functions

of t⊥i/�.

3. Results

The t⊥ dependence of the charge gap is shown in figure 2 for the cases with (t⊥1 = t⊥2 = t⊥)
and without (t⊥1 = t⊥ and t⊥2 = 0) frustration. The criterion for the occurrence of energy gaps
is the same as in [6]: �ν = �e−lν , where Gν+(lν) = O(1). The results for the rectangular
lattice (t⊥2 = 0) are also shown where the system is always insulating even for large t⊥1 [6].
In the case with frustration, the charge gap is strongly reduced; for the parameters used in the
model, it is found to vanish at t⊥/t‖ ≈ 0.2. This collapse of the charge gap occurs when
the interchain hopping becomes comparable with the charge gap at t⊥ = 0, which behaviour
is reminiscent for the deconfinement transition suggested in the quasi-one-dimensional Mott
insulators [8, 9]. The charge gap for large interchain hopping shows large size (N⊥) dependence
for the frustrated case, while it is almost N⊥ independent for the case without frustration.
This size dependence for large interchain hopping implies that the metallic state appears as a
result of frustrated interchain hopping in the large-N⊥ limit. The emergence of the metallic
behaviour can be attributed to nesting deviations of the Fermi surface that prevent the normal
state from becoming unstable towards a spin-density-wave formation. The Fermi surface would
be perfectly nested if t⊥1 �= 0 and t⊥2 = 0, or t⊥1 = 0 and t⊥2 �= 0. In the former case, the
nesting vector is Q = (π, π) whereas, in the latter case, Q = (π, 0).

The metallic behaviour can also be confirmed from the wave function renormalization
factor zk⊥ . The k⊥ dependence of zk⊥ (l) with l = 7 for several values of t⊥2 with fixed t⊥1/t‖
is shown in figure 2. For the rectangular lattice (t⊥2 = 0), this quantity takes a small value and
has very weak k⊥ dependence, consistent with the existence of an insulating state. On the other
hand, it takes sizable values and shows a strong k⊥ dependence for strong interchain frustration.
The quantity zk⊥ presents a broad maximum around k⊥ ≈ ±π/2, which behaviour implies that
the Fermi pockets [10] or ‘cold’ regions [11, 12] appear around k ≈ (k p

F (±π/2),±π/2).

4. Summary and discussion

In summary, we have examined the effect of the interchain frustration for half-filled Q1D
Hubbard chains by applying an N⊥-chain two-loop RG method. We have analysed both the
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t⊥ dependence of the Mott gap and the quasi-particle weight zk⊥ . The lattice geometry of the
system is crucial to the Mott insulating behaviour, and the metallic state is obtained only when
the network of interchain hopping sufficiently frustrates the nesting conditions.

Finally we discuss the metallic state that was suggested to occur in the Q1D organic
compound (TTM-TTP)I3 under high pressure [3]. The estimated magnitude of the Coulomb
repulsion between electrons on the same HOMO orbital is U = 0.57 eV [1]. From band
calculations, the transfer integrals adopted for (TTM-TTP)I3 are t‖ = 260 meV, t⊥1 = 9 meV,
and t⊥2 = 6 meV. As shown in figure 2, the interchain frustration is crucial to inducing
a metallic state in the present half-filled system. However, the hydrostatic pressure would
enhance not only the interchain hopping but also the intrachain hopping t‖; thus the strength
of the interaction U/t‖ (and in turn the magnitude of the charge gap) is effectively reduced.
Quantitatively the latter effect would dominate the overall pressure dependence of the transition
temperature in (TTM-TTP)I3 [3]. Our analysis implies that the insulator–metal transition
itself is dominated by the interchain frustration and is not controlled by a naive change in
the bandwidth. In (TTM-TTP)I3 at ambient pressure, a non-magnetic state has been reported
below the metal–insulator transition temperature, but such a spin state is not reproduced in
the present analysis. In order to discuss the spin state in (TTM-TTP)I3, we have to take into
account the inhomogeneity of charge in a single molecule, and that needs further investigation.
However, we believe that the scenario of the present paper would capture the mechanism of the
metalization and that the spin properties are determined by secondary effects of frozen charge
fluctuations.

The Mott transition in an anisotropic triangular lattice in two dimensions has also been
addressed by numerical path-integral renormalization-group techniques [13] and the transition
from an insulator without magnetic ordering to a paramagnetic metal has been suggested by
changing the hopping parameters. Our approach is restricted to the small interchain hopping
region; however, the result of the metal–insulator transition would be consistent with the
numerical results since the metallic state is observed for finite frustration. The phase boundary
of the metal–insulator transition would connect to the ones obtained by the numerics, where
the parameter correspondences are t‖ → t , t⊥1 → t , and t⊥2 → t ′. We have focused the
present analysis on the metallic behaviour and did not study the magnetic properties. In order
to clarify the magnetic ordering, we have to investigate the susceptibility of various symmetry-
broken states based on the RG formalism. Such an analysis on symmetry-broken states will be
reported in the future.
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